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SUMMARY

Histones and their posttranslational modifications
influence the regulation of many DNA-dependent
processes. Although an essential role for histone-
modifying enzymes in these processes is well estab-
lished, defining the specific contribution of individual
histone residues remains a challenge because many
histone-modifying enzymes have nonhistone tar-
gets. This challenge is exacerbated by the paucity
of suitable approaches to genetically engineer his-
tone genes in metazoans. Here, we describe a plat-
form in Drosophila for generating and analyzing any
desired histone genotype, and we use it to test the
in vivo function of three histone residues.We demon-
strate that H4K20 is neither essential for DNA replica-
tion nor for completion of development, unlike
inferences drawn from analyses of H4K20 methyl-
transferases. We also show that H3K36 is required
for viability and H3K27 is essential for maintenance
of cellular identity but not for gene activation. These
findings highlight the power of engineering histones
to interrogate genome structure and function in
animals.

INTRODUCTION

During animal development, a single genome gives rise to a wide

diversity of cells. Each cell type differentially regulates genome

activity to accurately execute a particular program of gene

expression, cell-cycle progression, and DNA replication. Failure

of this execution can lead to developmental defects or disease

states that reduce organismal fitness. Because the genome

sequence is essentially identical in most cell types, epigenetic

mechanisms have been proposed to bring about cell-type spe-

cific regulation of genome activity (Margueron and Reinberg,

2010). Such mechanisms require a substrate that carries regula-
Develop
tory information and a means of propagating this information

over time. Histone proteins are particularly attractive candidates

for carriers of epigenetic information because they can fulfill both

of these criteria. First, histone proteins have the potential to be

dynamic regulators of genome activity because they are subject

to a broad range of posttranslational modifications (PTMs),

including phosphorylation, acetylation, and methylation (Roth-

bart and Strahl, 2014). Histone PTMs are thought to contribute

to regulation of genome activity by controlling chromatin pack-

aging (Shogren-Knaak et al., 2006), and by serving as binding

sites for protein complexes that control a variety of DNA-depen-

dent processes including transcription, replication, and repair

(Lachner et al., 2001). Second, histone proteins provide a poten-

tial means of propagating information over time through their

partitioning to daughter cells during each cell division (Mar-

gueron and Reinberg, 2010).

Whereas critical roles for histone-modifying enzymes in the

regulation of genome activity have been clearly demonstrated

in a variety of species, the specific contribution of histone resi-

dues is less well understood (Henikoff and Shilatifard, 2011).

Systematic mutagenesis in the budding yeast Saccharomyces

cerevisiae has identified histone residues essential for viability

and for response to environmental challenges (Dai et al., 2008;

Nakanishi et al., 2008). However, there are likely to be additional

roles for histone residues in multicellular organisms, which

exhibit diverse regulation of genome activity across different

cell types and developmental stages. In multicellular organisms,

the function of histone residues has largely been inferred from

phenotypes caused by mutation of histone-modifying enzymes

rather than by mutation of histone residues themselves. Exami-

nation of phenotypes caused by mutations in histone modifiers

is not sufficient to make conclusions regarding causality

because many of these enzymes have multiple substrates,

including nonhistone proteins (Glozak et al., 2005; Huang and

Berger, 2008; Sims and Reinberg, 2008). More recently, substi-

tution of methionine for lysine residues in histone proteins has

been used to test the function of histone residues in animals

(Herz et al., 2014). However, these efforts are also insufficient

to test causality because the methionine mutants are thought

to act by dominantly interfering with histone methyltransferase
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Figure 1. A Single Histone Replacement

Transgene Rescues Deletion of the Endoge-

nous Histone Locus

(A) Schematic of the endogenous replication-

dependent histone locus. Breakpoints of the

deficiency are indicated by vertical arrows. Each

triangle represents a single 5 kb histone repeat

unit, which was cloned and multimerized into

a BAC vector for transgenesis. white+, mini-

white cassette; attB, site-specific recombination

sequence.

(B) Confocal images of cycle 15 embryos stained

with antibodies for phospho-histone H3 (red) and

DAPI (blue). Genotypes (top to bottom): wild-type

(yw); homozygous histone deletion (DHisC;+); ho-

mozygous histone deletion with two copies of the

12x wild-type histone transgene (DHisC;12xWT).

(C) Southern blot of SalI/XhoI digested genomic

DNA from 12xWT and wild-type (yw) flies, hybrid-

ized with an H2A probe.

(D) Table of viability tests for various wild-type

histone arrays. The p value for the chi-square test

is shown.

See also Figure S1.
activity (Lewis et al., 2013), which would likely affect all sub-

strates of the methyltransferases.

A particularly powerful approach for studying the biological

function of specific histone PTMs is to change the acceptor res-

idue to an amino acid that cannot be appropriately modified and

then to engineer a complete gene replacement for phenotypic

analysis. Implementing this strategy in animals is technically

challenging because metazoan histones are typically encoded

by gene clusters found at multiple chromosomal locations (Mar-

zluff et al., 2008). For example, the human genome has 64 his-

tone genes, clustered at three different loci (Marzluff et al.,

2002). In contrast, the Drosophila replication-dependent histone

genes are found at a single locus (Lifton et al., 1978). Recently,

Herzig and colleagues created a system for complementing

deletion of the endogenous Drosophila histone gene cluster

with plasmid-based transgenes (Günesdogan et al., 2010),

allowing for the first analysis of histone residue function in animal

development (Hödl and Basler, 2012; Pengelly et al., 2013).

However, a minimum of four transgenes was required to rescue

the histone locus deletion phenotype, limiting the ease with

which this strategy can be used in combination with other ge-

netic tools to study histone gene function in Drosophila.

Here, we present a BAC-based platform that can rescue dele-

tion of the endogenous Drosophila histone locus with a single

transgenic insertion, allowing us to study not only the regulation

of histone genes themselves, but also the specific contribution of
374 Developmental Cell 32, 373–386, February 9, 2015 ª2015 Elsevier Inc.
histones to the regulation of DNA-depen-

dent processes. After demonstrating its

in vivo functionality, we used this platform

to directly test the function during animal

development of three posttranslationally

modified histone residues: H3K36,

H3K27, and H4K20. Unlike results ob-

tained in yeast, we show that H3K36

is required for viability in Drosophila.
Consistent with current models, we find that H3K27 is required

for the maintenance of Polycomb target gene repression,

demonstrating that histone residues can perform an essential

function in gene regulation. These results underscore the essen-

tial roles played by these two histone residues in gene expres-

sion and animal development. Finally, in contrast to current

models, we show that a modifiable H4K20 residue is neither

required for DNA replication nor for completion of Drosophila

development. Together, these studies demonstrate the impor-

tance of directly testing the function of individual histone resi-

dues in animal development, and highlight the potential of this

approach to test the role of histones in metazoan genome struc-

ture and function.

RESULTS

A BAC-Based Platform for Histone Gene Replacement
The Drosophila melanogaster replication-dependent histone

genes are tandemly arrayed at a single locus on chromosome

2L (Figure 1A). Each 5kb repeat unit contains one copy of each

of the four core histone genes (His2A, His2B, His3, His4), plus

the linker histone, His1. Using the DrosDel system (Ryder et al.,

2004), Herzig and colleagues (Günesdogan et al., 2010) gener-

ated a precise deletion of the histone gene complex, termed

Df(2L)HisCED1429 (hereafter DHisC). Because zygotic transcrip-

tion of histone genes is first required during S phase of cell cycle



15 (Smith et al., 1993; Günesdogan et al., 2014), DHisC homozy-

gotes cannot complete this cycle and die as embryos following

depletion of the maternal histone contribution (Figure 1B).

In the Herzig approach, four independent plasmid-based

transgenes bearing three copies of the 5 kb histone repeat unit

were used to rescue DHisC (Günesdogan et al., 2010). To

create a more genetically facile system, we cloned tandem

arrays of the native 5 kb histone gene repeat unit into a BAC-

based vector capable of site-specific transgenesis (Figure 1A;

Figure S1 available online). The tandemly repeated organization

of the native histone gene repeat sequence in these constructs

maintains the cis-regulatory information required for proper his-

tone gene expression, thereby avoiding potential cell toxic

effects of histone overexpression or expression outside of

S phase (Gunjan and Verreault, 2003; Singh et al., 2010). Resup-

plying zygotic histone expression with a BAC-based transgene

fully rescues the embryonic cell-cycle arrest phenotype, as

depicted by phospho-histone H3 staining during cell cycle 15

(Figure 1B) and supports development to adulthood. Thus, the

BAC-based, transgenic histone arrays are functional in vivo.

To define the minimal number of transgenic histone genes

needed for full rescue of the histone deletion phenotype, we

generated tandem arrays with different numbers of repeat units

(Figure 1A). These vectors were integrated into the same

genomic location, thereby eliminating position-dependent

effects on transgene expression. Southern blots of genomic

DNA from histone replacement flies propagated for more than

50 generations show that the transgenic histone arrays are sta-

ble after integration in the genome (Figures 1C and S1). Viability

tests showed that six or fewer histone gene repeats are insuffi-

cient to rescue lethality of DHisC (Figure 1D), whereas 12 or

more repeats fully rescues lethality. When homozygous, the

12x transgene supports the propagation of a stable stock lacking

all endogenous histone genes. We refer to these genotypes as

‘‘12x-Rescue’’ and ‘‘24x-Rescue’’ strains, respectively. Impor-

tantly, we did not observe any developmental delays in 12x-

Rescue flies, either in the timing of larval hatching or adult

eclosion. We note that the fertility of 24x-Rescue and 12x-

Rescue females is somewhat decreased relative to wild-type

flies; however, the basis for this defect is not known.

The Drosophila Genome Contains 100 Copies of the
Histone Repeat Unit
The ability of a single transgene containing 12 histone repeats to

support development to adulthood is somewhat surprising,

given that original estimates suggested that there are upward

of 100 copies of the histone repeat unit on chromosome 2L (Lif-

ton et al., 1978). In contrast, current genome annotations

(FlyBase release version FB_2014_1) list only 23 histone repeats.

Thus, the precise number of histone genes in the Drosophila

genome remains an open question.

We took two complementary approaches to directly measure

the number of endogenous histone genes. First, we reasoned

that transgenic histone arrays could be used as in vivo calibrators

to accurately measure the endogenous gene copy number by

PCR. To discriminate between endogenous and transgenic

His2A DNA, we engineered a silent mutation in an XhoI site within

the transgenic His2A gene (Figure 2A). Using PCR primers that

recognize both endogenous and transgenic templates, we ampli-
Develop
fied His2A genomic DNA from four genotypes and digested the

PCR products with XhoI, cutting the endogenous His2A fragment

in two equal halves while leaving the transgenic His2A product

intact. Following electrophoresis, quantification of band inten-

sities revealed that the endogenous His2A template is 8-fold

more abundant than the transgenic His2A template (Figure 2A).

Importantly, semiquantitativePCRreactions fromboth theendog-

enous and transgenicHis2A templates arewithin the linear range,

as shown by XhoI digestion assays using genomic DNA from

four genotypes with different histone gene copy numbers (Fig-

ure 2A). Consistent with measurements from the XhoI digestion

assay, real-time PCR indicates that the His2A and His3 genes

are 7-fold more abundant in wild-type flies than 24x-Rescue

flies (Figure 2B). These experiments indicate that the haploid

Drosophila genome contains approximately 100 histone repeats.

Second, we calculated the histone gene copy number using

high-throughput sequencing analysis. We reasoned that the

abundance of histone sequences relative to those of other genes

on chromosome 2Lwould reflect the number of copies of histone

genes in the genome. To accurately measure their abundance,

we sequenced genomic DNA from two different strains andmap-

ped reads to a custom Drosophila genome containing a single

histone gene repeat unit (see Experimental Procedures). Com-

parison of the average read density across the coding sequence

of each histone gene to the average read density across coding

sequences of the remaining annotated genes on chromosome

2L revealed that the histone genes are�100-fold more abundant

(Figure 2C), consistent with our PCR assays and the original

estimates (Lifton et al., 1978).

A Histone Gene Dosage Compensation Mechanism
The preceding experiments show that wild-type diploid flies

contain �200 copies of the histone repeat unit, and yet a single

12x histone transgene is sufficient to support development of

flies lacking all endogenous histone genes. We therefore

compared expression levels between the endogenous and

transgenic histone genes. Western blot and RT-PCR analysis

at two stages of embryogenesis (0–1 hr and 4–6 hr) showed no

significant differences in histone protein or mRNA levels be-

tween wild-type and 24x-Rescue flies (Figures 3A–3C). Because

the zygotic histone genes are not active in 0–1 hr embryos, his-

tone levels at this time point reflect maternal protein and mRNA

derived from the activity of the histone genes during oogenesis.

The 4–6 hr time point includes cell cycle 15, when zygotic histone

gene activity is first required due to destruction of the maternal

histone supply. Despite different demands on histone gene ac-

tivity between these two stages, the 24x transgenic histone

genes produce the same amount of protein and mRNA as 200

copies of the endogenous histone genes (Figures 3A–3C).

Thus, histone replacement flies express equivalent steady-state

levels of histones as wild-type flies, despite a 10-fold difference

in gene copy number.

Because both the protein levels and the amino acid sequences

of the endogenous and transgenic histones are identical, we infer

that the nucleosome and higher-order chromatin organization is

similar across the genome in wild-type and 24x-Rescue flies. In

addition, 12x- and 24x-Rescue flies show no increase in

sensitivity to the DNA-replication inhibiting agent hydroxyurea

(Figure S2, and data not shown), as we hypothesize would occur
mental Cell 32, 373–386, February 9, 2015 ª2015 Elsevier Inc. 375
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Figure 2. The Haploid Drosophila Genome

Contains 100 Copies of the Histone

Repeat Unit

(A) Ethidium bromide-stained gel of XhoI-digested

PCR products of endogenous and transgenic

His2A genes. For each of the four genotypes,

barplots of normalized band intensity are shown

below each lane. Error bars represent SEM.

(B) Barplots of normalized real-time PCR results

for wild-type (yw) and 24x Rescue genotypes

using primers to His2A and His3. Error bars

represent SEM.

(C) Flow chart and plots of in silico quantification of

histone gene repeats for two wild-type strains

(Oregon R [OR], and y;cn,bw,sp). HisC: total read

depth for each of the five replication-dependent

genes; chr2L: box plots of average read depth for

the remaining genes on chromosome 2L. The box

represents the inner quartile range (IQR), and

whiskers represent 1.5-times IQR. For clarity,

outliers were not plotted.
if histone production during S phase was limiting in these

animals.

The similar amount of mRNA produced in 24x-Rescue and

wild-type flies suggests the existence of a histone gene dosage

compensation mechanism. To test whether such a mechanism

exists, we compared the levels of mRNA in wild-type and 24x-
376 Developmental Cell 32, 373–386, February 9, 2015 ª2015 Elsevier Inc.
Rescue flies to those in flies containing

both endogenous and transgenic histone

genes (‘‘endogenous + 24x’’), discrimi-

nating between them using the XhoI

digestion assay described above (Fig-

ure 3D). Similar to the results from undi-

gested samples (Figure 3B), His2A

mRNA levels are the same in wild-type

and 24x-Rescue embryos (Figure 3D,

lane 1 and lane 3). In contrast, His2A

mRNA levels originating fromboth endog-

enous and ectopic histone genes are

reduced in ‘‘endogenous + 24x’’ embryos

comparedwithwild-type and 24x-Rescue

embryos (Figure 3D, lane 2). Importantly,

the sum of endogenous plus ectopic

His2A mRNA in ‘‘endogenous + 24x’’ flies

equals the levels observed in wild-type or

24x-Rescue embryos. Thus, the total

amount of histone mRNA at a given stage

of embryogenesis is the same for each

genotype, suggesting that the steady

state level of RNA expressed from individ-

ual histone genes is scaled to the total

number of histone genes present in the

genome.

Transgenic Histone Gene Arrays
Assemble HLBs that Accurately
Process Histone Transcripts
The endogenous histone locus assem-

bles a nuclear subcompartment termed
the histone locus body (HLB), which is thought to facilitate effi-

cient transcription and mRNA processing during S phase (Liu

et al., 2006; Salzler et al., 2013). To test for HLB assembly at

the transgenic arrays, we performed immunofluorescence on

salivary gland polytene chromosome spreads. In these polyploid

cells, the genome is amplified up to 1000-fold, and sister
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Figure 3. Transgenic Histone Arrays Are Expressed at Levels Similar

to the Endogenous Genes

(A) Western blot of wild-type (WT) and 24x Rescue genotypes at 0–1 hr and

4–6 hr after egg laying.

(B) Ethidium bromide stained gel of RT-PCR products from 0–1 hr and 4–6 hr

wild-type (WT) and 24x Rescue embryos. Barplots of normalized band in-

tensity are shown below each lane. Error bars represent SEM.

(C) Barplots of normalized real-time RT-PCR results for H2A and H3 in

0–1 hr and 4–6 hr wild-type (WT) and 24x Rescue embryos. Error bars repre-

sent SEM.

(D) Ethidium bromide stained gel of XhoI-digested RT-PCR products from

0–1 hr and 4–6 hr embryos for three genotypes: wild-type (lane 1); +/+;12xWT/

12xWT (lane 2); 24x Rescue (lane 3). Barplots of normalized band intensity are

shown. Error bars represent SEM.

See also Figure S2.

Develop
chromatids are aligned in register, allowing for sensitive and

high-resolution cytology. Using antibodies to HLB components

FLASH, Mxc, and Mute (Figure 4A, and data not shown), we

observed a single HLB in wild-type polytene chromosomes at

the endogenous histone locus on chromosome 2L (Figure 4A0).
In ‘‘endogenous + 12x’’ larvae we observed two HLBs: one

assembled at the endogenous histone locus and a second

(smaller) one at an ectopic location corresponding to the 12x

wild-type transgene inserted on chromosome 3L (Figure 4A0 0).
Finally, in 12x-Rescue larvae, which contain no endogenous his-

tone genes, we only detected a single HLB at the ectopic site

(Figure 4A0 0 0). We conclude that HLBs assemble at transgenic,

ectopic histone loci in salivary gland polytene chromosomes,

similar to previous findings (Salzler et al., 2013).

To test whether we could also detect HLBs in 24x-Rescue

diploid cells, we performed immunofluorescence on post-blas-

toderm stage embryos. In 24x-Rescue embryos, we detected

Mxc and FLASH foci in 100% of nuclei (Figure 4B0 0). Consistent
with these cytological results, and with the absence of defects

in viability (Figure 1C), S1 nuclease protection assays showed

that histone mRNAs were processed normally in 24x-Rescue

animals (Figure 4C). However, we note that HLB assembly is

not fully recapitulated in histone replacement animals. Localiza-

tion of Mute reveals diffuse nuclear staining in 2–4 hr 24x-Rescue

embryos, in contrast to the discrete foci observed when detect-

ing Mute in wild-type embryos at this stage (Figure 4D, 2–4 hr).

In 24x-Rescue embryos, Mute becomes more concentrated in

the HLB as embryogenesis proceeds, and its localization resem-

bles that of wild-type embryos by 6–8 hr (Figure 4D), although it

never fully achieves the wild-type pattern. Previous work has

shown that Mute is a repressor of histone gene expression in

Drosophila (Bulchand et al., 2010), raising the possibility that

Mute’s localization to the HLB in 24x-Rescue embryos helps

regulate histone gene transcription.

Together, these data show that we can engineer a functional

replacement of the endogenous replication-dependent histone

genes, presenting an opportunity to interrogate the function of

individual histone residues in animal development. To test this

premise, we engineered genotypes that prevent posttransla-

tional modification of three different histone residues with pro-

posed roles in well-characterized epigenetic pathways.

H4K20 Is Dispensable for DNA Replication and Viability
Histone H4 lysine 20 (H4K20) can be mono-, di-, or tri-methyl-

ated, and mono-methylation is cell-cycle regulated (Jørgensen

et al., 2013). During DNA replication, newly incorporated his-

tones have low levels of H4K20 methylation because of

S phase-coupled destruction of PR-Set7/SET8, the enzyme

that catalyzes H4K20 mono-methylation (H4K20me1; Havens

and Walter, 2011). During G2, H4K20me1 levels rise, allowing

for di- and tri-methylation by Suv420H1/H2 enzymes during

the subsequent G1 phase. Experimental manipulation of

H4K20 methyltransferases suggests that H4K20 methylation

contributes to multiple DNA-dependent processes, including

replication, maintenance of genomic integrity, and chromatin

condensation (Beck et al., 2012b). For example in Drosophila,

PR-Set7 mutants display defects in heterochromatin silencing,

and PR-Set7 null animals die during larval stages, exhibiting

cell proliferation defects (Karachentsev et al., 2005). In
mental Cell 32, 373–386, February 9, 2015 ª2015 Elsevier Inc. 377
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Figure 4. The Transgenic Histone Gene Locus Assembles an HLB that Accurately Processes Histone Transcripts

(A) Confocal images of salivary gland polytene chromosome squashes stained for FLASH (red), HP1 (green), and DAPI (blue) for the three indicated genotypes:

wild-type (A0); DHisC/+;12xWT/+ (A0 0); and DHisC;12xWT/+ (A0 0 0). White arrow, endogenous HLB; white arrowhead, chromocenter; yellow arrow, transgenic HLB.

(B) Confocal images of blastoderm stage embryos stained for FLASH (green), Mxc (red), and Lamin (magenta) for the two indicated genotypes: wild-type (B0) and
24x Rescue (B0 0).
(C) Phosphorimager scan of S1 nuclease protection assay performed on total RNA from three genotypes: FLASHPBac/FLASHDf;Oregon R (wt, 4–6 hr); 24xRescue

(24x, 4–6 hr). M, markers. Note that FLASH function is required for normal processing of histone mRNA.

(D) Confocal images of embryos at 2–4 hr, 4–6 hr, and 6–8 hr stained for FLASH (green), Mute (red), and Lamin (magenta) for wild-type and 24x Rescue embryos.

For (B) and (D), the maximum projection of four 0.5 mm slices is shown.

378 Developmental Cell 32, 373–386, February 9, 2015 ª2015 Elsevier Inc.



mammalian cells, expression of a nondegradable PR-Set7 in-

duces re-replication of DNA due to aberrant licensing of replica-

tion origins (Beck et al., 2012b; Tardat et al., 2010). Although

these experiments demonstrate the essential role of H4K20

methyltransferases in DNA replication and other processes, the

specific function of the H4K20 residue remains untested.

To directly test the requirement for H4K20 in vivo, we gener-

ated a histone replacement transgene in which the H4K20 resi-

due is mutated to alanine (12xH4K20A). Expression of H4K20A

histones in an otherwise wild-type genetic background had

no observable phenotype. Given the putative critical role of

H4K20 methylation in chromosome duplication and condensa-

tion, we were surprised to find that 56% (n = 554) of homozygous

DHisC files with a 12xH4K20A transgene survive to adulthood

(hereafter, H4K20A replacement flies). Although H4K20A

replacement flies exhibit a significant developmental delay (24–

48 hr), their survival is in direct contrast to expectations, because

100% of PR-Set7 null animals die as larvae (Karachentsev et al.,

2005).

To explicitly test the requirement of H4K20 modification

in DNA replication, we performed 5-ethynyl-20-deoxyuridine
(EdU) incorporation studies in combination with H4K20me1 anti-

body staining of egg chambers from wild-type, 12xWT, and

12xH4K20A adult ovaries (Figures 5A and 5B). The germline nurse

cells and somatic follicle cells of Drosophila egg chambers are

polyploid, making them amenable to cytological assays. In addi-

tion, these cells endoreduplicate asynchronously, allowing for

direct comparisons between different stages of the cell cycle

within a single egg chamber. We detected robust EdU incorpo-

ration in wild-type and 12x Rescue nurse and follicle cell nuclei

that is inversely correlated with H4K20me1 levels (Figures 5A

and 5B), consistent with previous findings that PR-Set7 activity

is lowest during S phase. We corroborated this result using

MPM-2 monoclonal antibody staining of the histone locus

body, a readout of CycE-Cdk2 activity that is commonly used

as a proxy for active DNA replication (Figures 5C, 5D, S3A, and

S3B). In egg chambers from H4K20A replacement flies, there

is no detectable H4K20me1 signal in nurse cell or follicle cell

nuclei (Figures 5A and S3B). Nevertheless, we detected robust

EdU incorporation in these nuclei (Figures 5A, 5C, and S3A),

demonstrating that they are capable of DNA replication in the

absence of histone H4K20 modification. Because cells lacking

detectable H4K20 mono-methylation can actively incorporate

EdU during S phase and progress to gap phases, we conclude

that canonical H4K20 methylation is not essential for viability,

cell-cycle progression, or DNA replication.

TheDrosophila genome contains a single-copy gene encoding

a replication-independent version of histone H4 (His4r) that is

identical in amino acid sequence to canonical H4 (Akhmanova

et al., 1996). Although immunofluorescence and western blot

experiments (Figures 5A and 5E) could not detect methylation

of H4K20, expression of His4r could, in theory, provide a suffi-

cient amount of modifiable H4K20 to compensate for the

absence of replication-dependent H4K20. RT-PCR showed

that His4r mRNA levels are unchanged in 12xH4K20A replacement

flies, arguing against the bulk replacement of canonical H4 with

His4r (Figure S3D). To genetically test for the requirement of

His4r in 12xH4K20A replacement flies, we obtained a fly line with

a Piggy-Bac transposon insertion near the 50 end of His4r (here-
Develop
after His4rPB) (Figure S3C). Sequencing of PCR amplicons from

His4rPB flies showed that the transposon is inserted in the first

intron or 50 UTR of His4r, depending on the gene isoform (Fig-

ure S3E). His4rPB homozygotes are viable at submendelian

ratios, but they are sterile. RT-PCR of whole His4rPB adults or

dissected ovaries showed no detectable His4r mRNA (Fig-

ure S3F). Thus, His4rPB is a null or strong hypomorphic allele

of His4r.

We next took advantage of the facile genetics afforded by our

histone replacement platform by recombining the His4r mutant

allele with the 12xH4K20A transgene (Figure 5F). Third instar larvae

homozygous for both His4rPB and DHisC covered by 12xH4K20A

showed no expression of His4r by RT-PCR (Figure 5G). Despite

this fact, �85% of these flies pupate and 35% develop until late

pharate adults (Figure S3G). In one instance, we obtained an

overtly healthy adult fly that contained no wild-type copies of

H4, demonstrating that H4K20 is not essential for completion

of development. We note that this experiment may overestimate

the importance of H4rK20 because it was performed in the

absence of any H4r expression, and thus in the absence of any

function of H4r independent of its K20 residue. Together, these

findings demonstrate the importance of directly testing the func-

tions ascribed to histone residue PTMs, rather than relying on in-

direct inferences from mutant phenotypes of the enzymes that

catalyze their modification.

H3K27 Is Required for Heritable Silencing of Polycomb
Target Genes
The signaling events that specify cell fates during development

of multicellular organisms are often transient, yet these decisions

need to be remembered over time, through multiple rounds

of cell division. Methylation of histone H3 on lysine 27

(H3K27me3) is associated with heritable repression of Polycomb

group (PcG) target genes (Cao et al., 2002; Czermin et al., 2002;

Müller et al., 2002). Genetic and biochemical studies have iden-

tified multiple protein complexes that are required for PcG target

gene repression (Klymenko et al., 2006; Kuzmichev et al., 2002;

Shao et al., 1999). However, the specific role of H3K27 in PcG

target gene repression is less well understood.

We generated histone replacement constructs with either 8 or

12 histone gene repeat units in which H3K27 is mutated to

alanine (H3K27A). We recovered transgenic flies with eight

H3K27A tandem gene repeats (8xH3K27A), but did not recover a

12xH3K27A transformant. The presence of 8xH3K27A transgenes

in an otherwise wild-type genetic background elicited several

dominant phenotypes, including decreased viability and dimin-

ished fertility. A hemizygous DHisC background enhanced these

phenotypes, and also resulted in new phenotypes, including

aberrant leg and wing morphogenesis (Figure S4, and not

shown). The posterior wing phenotype is reminiscent of gain-

of-function alleles of Ultrabithorax (Ubx), in which Ubx is ectopi-

cally active in cells of the second thoracic segment where it is

normally inactive in wild-type animals (Lewis, 1978). Ubx is a

well-characterized target of PcG complexes in thewing (Christen

and Bienz, 1994). To determine whether expression of H3K27A

histones results in ectopic expression of Ubx, we performed

immunofluorescence experiments on third instar imaginal wing

discs. Similar to wild-type flies, we detected no Ubx expres-

sion in the main epithelium of flies bearing 12xWT transgenes
mental Cell 32, 373–386, February 9, 2015 ª2015 Elsevier Inc. 379
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Figure 5. H4K20 Is Dispensable for DNA Replication and Viability

(A) Confocal images of stage 6–8 egg chambers stained for H4K20me1 (green), EdU (red), and DAPI (blue).

(B) Barplot of the fraction of nurse cell nuclei with indicated H4K20me1 levels for each category of EdU incorporation. Error bars represent SEM.

(C) Barplot of the fraction of nurse cell nuclei with shared EdU and MPM2 status for each genotype. Error bars represent SEM.

(D) Barplot of the fraction of nurse cell nuclei with the indicated H4K20me1 levels for each category of MPM2 staining. Error bars represent SEM.

(E) Western blots of adult head extracts from three genotypes: wild-type (WT), 12x Rescue (12xWT), and H4K20A replacement flies (12xH4K20A).

(F) Genetic scheme for analysis of His4r function in H4K20A replacement flies.

(G) Ethidium bromide stained gel of RT-PCR products from H4K20A replacement flies. Genotypes: (lane 1) DHisC/DHisC; His4rPB, 12xH4K20A/TM6B. (lane 2)

DHisC/DHisC; His4rPB, 12xH4K20A/ His4rPB.

See also Figure S3.
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Figure 6. H3K27 Is Required for Polycomb

Target Gene Repression

(A–D) Confocal images of imaginal wing discs of

the indicated genotypes with 48–60 hr mitotic

clones stained for Ubx (blue) and H3K27me3 (red).

Mutant and DHisC clones are marked by absence

of GFP (green). The square outlines the magnified

area at the right.

(E) Schematic of clone induction and confocal

images of two different clones induced 24 hr prior

to dissection. GFP (green), Ubx (red), DAPI (blue).

See also Figure S4.
(Figure S4D). In contrast, we detected low-level ectopic expres-

sion of Ubx in the posterior compartment of 8xH3K27A third instar

imaginal wing discs (Figure S4E), and this ectopic expression of

Ubx is enhanced in DHisC hemizygous animals (Figure S4F).

These experiments are consistent with a dose-dependent

requirement for modified H3K27 histones in PcG target gene

repression, and indicate that incorporation of nonmodifiable

H3K27A into chromatin interferes with the ability of PcG com-

plexes to repress target genes.

Because methylation of H3K27 is found at target genes

repressed by PcG complexes, we tested for a genetic interaction

between aPc loss of function allele (PcXT) and the 8xH3K27A trans-

gene. The Pc gene is haploinsufficient, and both PcXT heterozy-

gous flies and 8xH3K27A transgenic flies exhibit ectopic sex

combs at low frequency (8% and 1%, respectively; Figure S4G).
Developmental Cell 32, 373–386
However, 8xH3K27A transgenic flies that

are also heterozygous for PcXT exhibit

ectopic sex combs at a much higher fre-

quency (68%; Figure S4G). Thus, the

presence of H3K27A histones enhances

the Pc ectopic sex comb phenotype,

consistent with a role for modified

H3K27 in PcG target gene silencing.

To directly test the requirement of

H3K27 in PcG target gene repression,

we used the FLP-FRT system (Xu and

Rubin, 1993) to generate and compare

cell clones that express nonmodifiable

H3K27A to those that are mutant for

E(z), the enzyme that catalyzes methyl-

ation of H3K27 (Czermin et al., 2002;

Müller et al., 2002), as well as for Pc,

which specifically binds to H3K27me3 at

PcG target genes (Cao et al., 2002).

Clones of E(z) mutant wing imaginal disc

cells show ectopic expression of Ubx in

the wing pouch near the dorsal-ventral

boundary (Figure 6A), consistent with pre-

vious findings (Müller et al., 2002). Clones

of cells lacking Pc function also ectopi-

cally express Ubx in the same spatial

pattern as E(z) mutant clones (Figure 6B).

Because these clones were made at the

same time (48–60 hr after egg laying),

the increased Ubx levels in Pc clones
relative to E(z) clones may be due to differences in Pc and

E(z) protein stability. Strikingly, DHisC clones containing an

8xH3K27A transgene (hereafter, H3K27A clones) show robust

ectopic expression of Ubx in the same spatial pattern as do

E(z) and Pc mutant clones, unlike DHisC clones containing a

12xWT or 6xWT transgene that do not express Ubx (Figures 6C

and 6D). H3K27A clones also exhibit ectopic expression of

Abd-B and En, two other PcG target genes inwing imaginal discs

(not shown). The restriction of ectopic PcG target activity only to

clones near the D/V boundary demonstrates that replacement of

wild-type H3 with H3K27A does not result in widespread de-

regulation of gene expression. Instead, there is a specific dereg-

ulation of PcG target genes in the expected cell populations

within wing imaginal discs. DHisC clones covered by an 8x his-

tone replacement transgene in which H3K27 was mutated to
, February 9, 2015 ª2015 Elsevier Inc. 381



an arginine instead of an alanine (8xH3K27R) deregulate PcG

target genes in the same spatial profile (Figure S4H), demon-

strating that loss of a modifiable H3K27 is responsible for the

phenotype rather than loss of the positive charge on the lysine

side chain, consistent with another recent report (Pengelly

et al., 2013). These experiments provide direct evidence that

H3K27 is required for regulation of PcG target genes. Activation

of PcG target genes in the absence of a modifiable H3K27 resi-

due also demonstrates that other modifications of H3K27 (e.g.,

acetylation) are not required for expression per se.

A hallmark of epigenetic regulators like Polycomb is their abil-

ity to propagate gene regulatory states through many cell divi-

sions (Simon and Kingston, 2013). Histone modification levels,

chromatin composition, and chromosome structure all change

dramatically through the cell cycle (Follmer et al., 2012; Fonseca

et al., 2012), raising the possibility that changes in epigenetic

states may depend on passage through a particular stage of

the cell cycle. We took advantage of the high temporal resolu-

tion of mitotic clone analysis to determine when ectopic expres-

sion of Ubx is first detectable following removal of wild-type

histones. Consistent with a cell-doubling time of 12–24 hr in

wing discs (Shibutani et al., 2008), we observed many

H3K27A clones consisting of only two cells 24 hr after clone

induction. Many of these clones show high levels of ectopic

Ubx expression (Figure 6E). Remarkably, we also found single

cell H3K27A clones with robust ectopic Ubx activity (Figure 6E).

Single cell H3K27A clones have yet to divide following induction

of the clone. Because the cell cycle-dependent histones are

only expressed during S phase, the observed ectopic expres-

sion of Ubx indicates that these clones have completed DNA

replication and are in the G2 phase of the cell cycle. Thus, we

conclude that cell division is not necessary for ectopic activation

of Ubx, and that a 50% dilution of wild-type histones by H3K27A

histones after a single S phase results in derepression of Ubx in

the wing.

H3K36 Is Required for Completion of Development
Methylation of lysine 36 on histone H3 (H3K36) is a PTM associ-

ated with actively transcribed genes (Bannister et al., 2005;

Strahl et al., 2002). Studies in the budding yeast S. cerevisiae

have demonstrated a role for H3K36 methylation in suppression

of spurious transcription initiation in the wake of transcribing

RNA polymerase by recruitment of histone deacetylases to

gene bodies (Carrozza et al., 2005; Keogh et al., 2005). In

animals, depletion of SETD2, the enzyme that catalyzes

H3K36me3, is reported to cause dysregulation of alternative

exon inclusion, implicating H3K36 methylation in the regulation

of pre-mRNA splicing (Luco et al., 2010). A role for H3K36

methylation in regulation of sex chromosome dosage compen-

sation has also been reported (Larschan et al., 2007).

We generated a 12x histone replacement transgene in which

H3K36 is mutated to arginine (12xH3K36R). When carried in a

wild-type or DHisC hemizygous background, 12xH3K36R trans-

genes cause no discernible developmental or fertility defects,

demonstrating that expression of H3K36R histones does not

result in overtly dominant phenotypes. By contrast, 100% of

homozygous DHisC animals containing one 12xH3K36R histone

replacement transgene (hereafter H3K36R replacement flies)

die before the end of pupal development (Figure 7A). Western
382 Developmental Cell 32, 373–386, February 9, 2015 ª2015 Elsevi
blots of wild-type and H3K36R replacement larvae show that

H3K36R histones are expressed and are not recognized by

anti-H3K36me3 antibodies (Figure 7B). To examine the cellular

basis for the requirement of H3K36 in development, we gener-

ated clones of wing imaginal disc cells lacking endogenous his-

tones. Although we observed a marked decrease in H3K36me3

levels in DHisC clones covered by a 12xH3K36R transgene (Fig-

ure 7C), we did not observe a significant difference in the size

of these clones relative to their wild-type twins (not shown).

We also observed a dramatic decrease in H3K36me3 levels in

polytene chromosomes from H3K36R replacement third instar

larvae (Figure 7D). Despite this depletion, we detected no

apparent defects in chromosome structure. Together, these ex-

periments demonstrate that H3K36 is essential for viability in

Drosophila, in contrast to results from budding yeast, where

H3K36 mutations show no overt growth defects (Kizer et al.,

2005).

DISCUSSION

A Facile Genetic Platform to Study Histone Function
Distinguishing direct from indirect effects caused bymutations in

histone-modifying enzymes can be difficult because histone

modifiers can have multiple substrates, including nonhistone

proteins (Glozak et al., 2005; Huang and Berger, 2008; Sims

and Reinberg, 2008). The more direct approach of investigating

the role of histone PTMs by mutating residues of interest is

intractable in most animal systems. Here we demonstrate

functional histone gene replacement in Drosophila with a single

BAC-based transgene, improving upon a previously described

method requiring multiple transgenic insertions (Günesdogan

et al., 2010). Using this platform, we provide evidence for a

mechanism that scales histone expression to compensate for

changes in gene number, and demonstrate that the biological

function of histone tail residues can be ascertained either in

whole animals or specific tissues. The data presented here

reveal that phenotypes caused bymutation of histone-modifying

enzymes will not always be recapitulated by mutation of the cor-

responding histone target residue.

HistoneResidueMutant PhenotypesCanDiffer between
Yeast and Animals
Histone gene replacement strategies in budding yeast have

identified multiple histone residues that are essential for

viability and responses to environmental challenges (Dai

et al., 2008; Nakanishi et al., 2008). Multicellular animals require

a greater range of genome regulation to create a diversity of

cell types in development, which may result in a greater reli-

ance on posttranslationally modified histone residues that

affect epigenetic regulation of genome activity. Our data sup-

port this hypothesis. We found that H3K36R replacement flies

die before completing development, whereas the same muta-

tion in yeast is viable and shows no overt growth defects (Kizer

et al., 2005). These findings suggest a greater dependency on

H3K36 in the development and survival of multicellular organ-

isms. Thus, our histone replacement platform has the potential

to identify additional histone residues that perform essential

functions in animals but have not been discovered in previous

studies.
er Inc.
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Figure 7. H3K36R Replacement Flies Are Inviable and Lack H3K36me3

(A) Barplots of the expected fraction of viable flies at each indicated stage. We used the denominator from the previous stage to calculate the percentage

observed at each stage.

(B) Western blots from wild-type (12xWT) and H3K36R replacement (12xH3K36R) third instar larval nuclei.

(C) Confocal images of imaginal wing discs with 48–60 hrmitotic clones stained for H3K36me3 (red) and DAPI (blue).DHisC clones aremarked by absence of GFP

(green).

(D) Confocal images of salivary gland polytene chromosomes from 12x Rescue (12xWT) and H3K36R replacement flies (12xH3K36R) stained for DAPI (blue) and

H3K36me3 (green).
The Requirement of Histone Residues in Heritable
Regulation of Gene Expression
The co-occurrence of H3K27me3 and transcriptional repression

by Polycomb proteins has led to the widely held hypothesis that

H3K27me3 contributes to repression of PcG target gene expres-

sion. However, a direct test for the requirement of H3K27me3 in

PcG target gene repression has been lacking. Our data, as well
Develop
as those of Müller and colleagues (Pengelly et al., 2013), demon-

strate that H3K27 performs an essential function in maintaining

PcG target gene repression. Thus, at least in certain circum-

stances, posttranslational modification of a histone residue is

directly required for regulation of gene expression.

Direct comparison of DHisC clones covered by H3K27A and

H3K27R transgenes shows the same pattern of PcG target
mental Cell 32, 373–386, February 9, 2015 ª2015 Elsevier Inc. 383



gene derepression in wing imaginal discs. However, the domi-

nant effects we observe in H3K27A transgenic flies are notably

absent from the H3K27R transgenic flies, suggesting that

expression of H3K27A histones results in a more severe pheno-

type. Because both mutations introduce nonmodifiable resi-

dues, the difference in their phenotypes may result from the

charge at this residue, which is maintained as positive by substi-

tution with arginine, but not alanine. The decrease in positive

charge in H3K27A histonesmay decrease the affinity of the inter-

action between the histone tail and the negatively charged DNA

backbone, potentially altering chromatin structure. Polycomb

target genes may be particularly sensitive to changes in chro-

matin structure, as one proposed mode of PcG action is through

chromatin compaction (Simon and Kingston, 2013). Thus, the

amino acid used to mutate a particular histone residue could

distinguish between roles of histone PTMs to serve as binding

sites for trans-acting proteins and to act as regulators of chro-

matin packaging.

H4K20 Methylation in Metazoans
The data definitively show that canonical H4K20 is dispensable

for DNA replication and Drosophila development. This finding

is surprising, given that genetic studies manipulating PR-Set7/

Suv420H1/Suv420H2 activity in cell culture and animal models

have demonstrated a consistent correlation of deleterious and

lethal phenotypes with loss of H4K20 methylation (Beck et al.,

2012b). In both mouse and Drosophila a complete loss of the

PR-Set7 mono-methyltransferase, which is required for all

H4K20 methylation states, results in a failure to complete devel-

opment (Huen et al., 2008; Karachentsev et al., 2005; Oda et al.,

2009). In addition, tethering active, but not catalytically inactive,

PR-Set7 to DNA results in the recruitment of components of the

ORC and MCM complexes, which are essential DNA replication

factors (Beck et al., 2012a; Tardat et al., 2010). Although flies

lacking canonical H4K20 are viable, we note that they are not

phenotypically wild-type. For example, they are sensitive to cul-

ture conditions and exhibit a significant developmental delay,

even when H4K20A replacement larvae are cultured separately

from their wild-type siblings. Thus, posttranslational modification

of H4K20 is likely one of multiple mechanisms that ensures fidel-

ity and robustness to the processes of DNA replication, chro-

matin condensation, and heterochromatin maintenance.

Several lines of evidence demonstrate that the Drosophila

replication-independent H4 gene (His4r) does not compensate

for the absence of replication-dependent H4K20. First, we saw

no increase in His4r mRNA levels in H4K20A replacement ani-

mals. Second, we cannot detect H4K20 PTMs in H4K20A

replacement animals by immunofluorescence or by western

blot. Third, we show that when covered by 12xH4K20A trans-

genes, flies homozygous for bothHis4rPB andDHisC can survive

until late pharate stages and complete development. We cannot

detect His4r mRNA in flies homozygous for His4rPB, demon-

strating that this is a strong allele. Any maternally contributed

wild-type H4 would either be absent or greatly diluted by these

late stages of development. Thus maternal H4 is unlikely to

have any impact on processes that require a significant concen-

tration of H4K20 PTMs. The decrease in the ability of 12xH4K20A

transgenes to rescueDHisC inHis4rPB homozygotesmay be due

to a function for His4r that becomes necessary only after muta-
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tion of canonical H4K20. His4r rescue experiments will be

required to definitively test this possibility.

Altogether, our data demonstrate that H4K20 is neither essen-

tial for DNA replication nor for completion of development. One

explanation for this finding is that nonhistone substrates of PR-

Set7/SET8 are essential for DNA replication and cell-cycle

progression. Comparative phenotypic analysis of mutations in

histone modifying enzymes and mutations in their cognate his-

tone residues should provide answers to this question. More

generally, our findings raise the important possibility that nonhis-

tone proteins can function as carriers of epigenetic information

that is required for proper animal development.

EXPERIMENTAL PROCEDURES

Histone Locus Transgene Construction

The pMulti-BAC vector was generated by combining components from pBAC/

oriV (Wild et al., 2002) and pattB (Bischof et al., 2007), followed by extensive

site-directed mutagenesis. The 5 kb histone repeat unit was subcloned into

pBluescript prior to multimerization in pMulti-BAC. See Supplemental Experi-

mental Procedures for additional details.

Fly Strains and Genetic Crosses

A list of all fly strains and genetic crosses is included in the Supplemental

Experimental Procedures.

Immunofluorescence, Clone Induction, and Confocal Microscopy

Salivary gland polytene chromosome squashes were performed on wandering

third instar larvae, as previously described (Salzler et al., 2013). Embryo stains

and mitotic recombination experiments in imaginal discs were performed as

previously described (Estella et al., 2008). Egg chamber immunofluorescence

was performed as previously described (Deng et al., 2001). EdU incorporation

was performed using the Click-iT EdU Alexa Fluor 555 imaging kit (Invitrogen)

according to the manufacturer’s instructions. The maximum projection from

two adjacent z-slices from stage 6–8 egg chambers was used as representa-

tive images for each genotype. For quantification of signal intensities in

nurse cell nuclei, each channel was scored independently of the other chan-

nels. See Supplemental Experimental Procedures for details and for a list of

antibodies used.

In Silico Quantification of Endogenous Histone Gene Repeats

High-throughput genomic DNA sequencing libraries were generated from

adult virgin females, as previously described (McKay and Lieb, 2013; see

genomic input files under GEO accession number GSE38727). The following

exceptions were made to unambiguously map reads to the histone locus. A

custom reference genome was created by removing all replication-depen-

dent histone gene repeat sequences from genome version dm3, and by

adding back a single 5 kb histone gene repeat unit. An unlimited number

of reads were then mapped to this custom genome using bowtie (version

0.12.3) using the options ‘‘–nomaqround’’ and ‘‘–best’’ (Langmead et al.,

2009). Coverage values were then calculated for each base in the genome.

The average read depth across each gene’s translated sequence was calcu-

lated for the five replication-dependent histone genes, and the remaining

refSeq genes on chromosome 2L. Data were plotted in R (http://www.

R-project.org).

S1 Nuclease Protection Assay

S1 assays were performed as described in (Salzler et al., 2013) using total RNA

isolated from 4 to 6 hr embryos.

Western Blotting

Immunoblot analyses were performed as described (Fuchs et al., 2012) with

the following exceptions. Embryos were lysed by bead-beating for 3 min in

SUTEB buffer (1% SDS, 8M urea, 10 mM Tris [pH 6.8], 10 mM EDTA,

0.01% bromophenol blue). Lysates were then boiled for 10 min and the super-

natant was clarified by centrifugation. We could not obtain a reproducible
er Inc.
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anti-H4K20me1 signal on western blots, so anti-H4K20me3 was used. Adult

heads were used for this analysis because they expressed high levels of

H4K20me3.

Reverse Transcription and PCR Assays

For histone gene expression analyses, total RNAwas isolated using Trizol, and

reverse transcription was performed using random hexamers and Superscript

II (Invitrogen), according to the manufacturer’s protocols. RT-PCR was per-

formed using gene-specific primers to His2A, His3, His4r, and a-tubulin.

Genomic DNA from 15 adult males was used for histone gene copy-number

assays. For semiquantitative analysis of PCR products, amplicons were run

on 8% acrylamide gels, and bands were quantified using ImageJ. iTaq Univer-

sal SYBR Green Supermix (Bio-Rad) was used for real-time PCRs. Additional

details and primer sequences are available in the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.devcel.2014.12.025.

ACKNOWLEDGMENTS

The authors thank Bill Marzluff for bringing us all together and for establishing a

fun and collaborative research environment for histone and chromatin biology

in Chapel Hill. We also thank A. Herzig for generous gifts of fly lines and for

communicating results prior to publication. M.P.M. was supported in part by

an NIH predoctoral fellowship, F31-CA177088. M.P.M., T.J.P., and S.L.M.

were also supported in part by NIH predoctoral traineeships, T32-

GM007092. S.K. was supported in part by aNational Cancer Institute postdoc-

toral traineeship, T32-CA009156, and by an NIH diversity supplement to NIH

grant R01-GM053034 (to A.G.M.). This work was supported by NIH grants

R01-DA036897 (to R.J.D., A.G.M., and B.D.S.) and GM058921 (to R.J.D.)

and by startup funds from the University of North Carolina (to D.J.M.).

Received: May 30, 2014

Revised: November 7, 2014

Accepted: December 30, 2014

Published: February 9, 2015

REFERENCES

Akhmanova, A., Miedema, K., and Hennig, W. (1996). Identification and char-

acterization of the Drosophila histone H4 replacement gene. FEBS Lett. 388,

219–222.

Bannister, A.J., Schneider, R., Myers, F.A., Thorne, A.W., Crane-Robinson, C.,

and Kouzarides, T. (2005). Spatial distribution of di- and tri-methyl lysine 36 of

histone H3 at active genes. J. Biol. Chem. 280, 17732–17736.

Beck, D.B., Burton, A., Oda, H., Ziegler-Birling, C., Torres-Padilla, M.E., and

Reinberg, D. (2012a). The role of PR-Set7 in replication licensing depends

on Suv4-20h. Genes Dev. 26, 2580–2589.

Beck, D.B., Oda, H., Shen, S.S., and Reinberg, D. (2012b). PR-Set7 and

H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome

condensation, and transcription. Genes Dev. 26, 325–337.

Bischof, J., Maeda, R.K., Hediger, M., Karch, F., and Basler, K. (2007). An opti-

mized transgenesis system for Drosophila using germ-line-specific phiC31 in-

tegrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317.

Bulchand, S., Menon, S.D., George, S.E., and Chia, W. (2010). Muscle wasted:

a novel component of the Drosophila histone locus body required for muscle

integrity. J. Cell Sci. 123, 2697–2707.

Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P.,

Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation

in Polycomb-group silencing. Science 298, 1039–1043.

Carrozza, M.J., Li, B., Florens, L., Suganuma, T., Swanson, S.K., Lee, K.K.,

Shia, W.J., Anderson, S., Yates, J., Washburn, M.P., and Workman, J.L.
Develop
(2005). Histone H3methylation by Set2 directs deacetylation of coding regions

by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592.

Christen, B., and Bienz, M. (1994). Imaginal disc silencers from Ultrabithorax:

evidence for Polycomb response elements. Mech. Dev. 48, 255–266.

Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002).

Drosophila enhancer of Zeste/ESC complexes have a histone H3methyltrans-

ferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196.

Dai, J., Hyland, E.M., Yuan, D.S., Huang, H., Bader, J.S., and Boeke, J.D.

(2008). Probing nucleosome function: a highly versatile library of synthetic his-

tone H3 and H4 mutants. Cell 134, 1066–1078.

Deng, W.M., Althauser, C., and Ruohola-Baker, H. (2001). Notch-Delta

signaling induces a transition from mitotic cell cycle to endocycle in

Drosophila follicle cells. Development 128, 4737–4746.

Estella, C., McKay, D.J., and Mann, R.S. (2008). Molecular integration of wing-

less, decapentaplegic, and autoregulatory inputs into Distalless during

Drosophila leg development. Dev. Cell 14, 86–96.

Follmer, N.E., Wani, A.H., and Francis, N.J. (2012). A polycomb group protein

is retained at specific sites on chromatin in mitosis. PLoS Genet. 8, e1003135.

Fonseca, J.P., Steffen, P.A., Müller, S., Lu, J., Sawicka, A., Seiser, C., and

Ringrose, L. (2012). In vivo Polycomb kinetics and mitotic chromatin binding

distinguish stem cells from differentiated cells. Genes Dev. 26, 857–871.

Fuchs, S.M., Kizer, K.O., Braberg, H., Krogan, N.J., and Strahl, B.D. (2012).

RNA polymerase II carboxyl-terminal domain phosphorylation regulates pro-

tein stability of the Set2 methyltransferase and histone H3 di- and trimethyla-

tion at lysine 36. J. Biol. Chem. 287, 3249–3256.

Glozak, M.A., Sengupta, N., Zhang, X., and Seto, E. (2005). Acetylation and de-

acetylation of non-histone proteins. Gene 363, 15–23.
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